541 research outputs found

    Exploring Food Detection using CNNs

    Full text link
    One of the most common critical factors directly related to the cause of a chronic disease is unhealthy diet consumption. In this sense, building an automatic system for food analysis could allow a better understanding of the nutritional information with respect to the food eaten and thus it could help in taking corrective actions in order to consume a better diet. The Computer Vision community has focused its efforts on several areas involved in the visual food analysis such as: food detection, food recognition, food localization, portion estimation, among others. For food detection, the best results evidenced in the state of the art were obtained using Convolutional Neural Network. However, the results of all these different approaches were gotten on different datasets and therefore are not directly comparable. This article proposes an overview of the last advances on food detection and an optimal model based on GoogLeNet Convolutional Neural Network method, principal component analysis, and a support vector machine that outperforms the state of the art on two public food/non-food datasets

    The Optical System for the Large Size Telescope of the Cherenkov Telescope Array

    Full text link
    The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m2^2. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of ∌\sim94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical axis reference laser on the target of the telescope camera. The two actuators and the universal joint of each mirror facet are respectively fixed to three neighboring joints of the dish space frame, via specially designed interface plate.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. VI. FURTHER OBSERVATIONS FROM TNG, WHT, OAN, SOAR, AND MAGELLAN TELESCOPES

    Get PDF
    IndexaciĂłn: Web of ScienceBlazars, one of the most extreme classes of active galaxies, constitute so far the largest known population of.-ray sources, and their number is continuously growing in the Fermi catalogs. However, in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidates of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition, about one-third of the gamma-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower-energy counterpart. Since 2012 we have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 gamma-ray blazar candidates from different observing programs we carried out with the Telescopio Nazionale Galileo, William Herschel Telescope, Observatorio Astronomico Nacional, Southern Astrophysical Research Telescope, and Magellan. Telescopes. We found that 21 out of 30 sources investigated are BL Lac objects, while the remaining targets are classified as flat-spectrum radio quasars showing the typical broad emission lines of normal quasi-stellar objects. We conclude that our selection of gamma-ray blazar. candidates based on their multifrequency properties continues to be a successful way to discover potential low-energy counterparts of the Fermi. unidentified gamma-ray sources and to confirm the nature of BCUs.http://iopscience.iop.org/article/10.3847/0004-6256/151/4/95/met

    Virtual Reality Simulator for Medical Auscultation Training

    Get PDF
    © Springer Nature Switzerland AG 2019. According to the Oxford English dictionary, auscultation is “the action of listening to sounds from the heart, lungs, or other organs, typically with a stethoscope, as a part of medical diagnosis.” In this work, we describe a medical simulator that includes audio, visual, pseudo-haptic, and spatial elements for training medical students in auscultation. In our training simulator, the user is fully immersed in a virtual reality (VR) environment. A typical hospital bedside scenario was recreated, and the users can see their own body and the patient increase immersion. External tracking devices are used to acquire the user’s movements and map them into the VR environment. The main idea behind this work is for the user to associate the heart and lung sounds, as heard through the stethoscope with the corresponding health-related problems. Several sound parameters including the volume, give information about the type and severity of the disease. Our simulator can reproduce sounds belonging to the heart and lungs. Through the proposed VR-based training, the medical student ideally will learn to relate sounds to illnesses in a realistic setting, accelerating the learning process

    Ab initio study of the volume dependence of dynamical and thermodynamical properties of silicon

    Full text link
    Motivated by the negative thermal expansion observed for silicon between 20 K and 120 K, we present first an ab initio study of the volume dependence of interatomic force constants, phonon frequencies of TA(X) and TA(L) modes, and of the associated mode Gruneisen parameters. The influence of successive nearest neighbors shells is analysed. Analytical formulas, taking into account interactions up to second nearest neighbors, are developped for phonon frequencies of TA(X) and TA(L) modes and the corresponding mode Gruneisen parameters. We also analyze the volume and pressure dependence of various thermodynamic properties (specific heat, bulk modulus, thermal expansion), and point out the effect of the negative mode Gruneisen parameters of the acoustic branches on these properties. Finally, we present the evolution of the mean square atomic displacement and of the atomic temperature factor with the temperature for different volumes, for which the anomalous effects are even greater.Comment: 24 pages, Revtex 3.0, 11 figures, accepted for publication in Phys. Rev.

    TEMPRANILLO is a regulator of juvenility in plants

    Get PDF
    Many plants are incapable of flowering in inductive daylengths during the early juvenile vegetative phase (JVP). Arabidopsis mutants with reduced expression of TEMPRANILLO (TEM), a repressor of FLOWERING LOCUS T (FT) had a shorter JVP than wild-type plants. Reciprocal changes in mRNA expression of TEM and FT were observed in both Arabidopsis and antirrhinum, which correlated with the length of the JVP. FT expression was induced just prior to the end of the JVP and levels of TEM1 mRNA declined rapidly at the time when FT mRNA levels were shown to increase. TEM orthologs were isolated from antirrhinum (AmTEM) and olive (OeTEM) and were expressed most highly during their juvenile phase. AmTEM functionally complemented AtTEM1 in the tem1 mutant and over-expression of AmTEM prolonged the JVP through repression of FT and CONSTANS (CO). We propose that TEM may have a general role in regulating JVP in herbaceous and woody species

    Stroke Based Painterly Rendering

    Get PDF
    International audienceMany traditional art forms are produced by an artist sequentially placing a set of marks, such as brush strokes, on a canvas. Stroke based Rendering (SBR) is inspired by this process, and underpins many early and contemporary Artistic Stylization algorithms. This Chapter outlines the origins of SBR, and describes key algorithms for placement of brush strokes to create painterly renderings from source images. The chapter explores both local greedy, and global optimization based approaches to stroke placement. The issue of creative control in SBR is also briefly discussed

    The Cherenkov Telescope Array Large Size Telescope

    Full text link
    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223
    • 

    corecore